Key Publications
AEAr Agonists
Key Review Articles
-
Pasternak, G. W. (2018). Mu Opioid Pharmacology: 40 Years to the Promised Land. Advances in Pharmacology, 261–291.https://doi.org/10.1016/bs.apha.2017.09.006
-
Pasternak, G. W. (2014). Opiate Pharmacology and Relief of Pain. Journal of Clinical Oncology, 32(16), 1655–1661. https://doi.org/10.1200/jco.2013.53.1079
-
Pasternak, G. W. (2014b). Opioids and their receptors: Are we there yet? Neuropharmacology, 76, 198–203. https://doi.org/10.1016/j.neuropharm.2013.03.039
-
Pasternak, G. W. (2013). Mu Opioids and Their Receptors: Evolution of a Concept. Pharmacological Reviews, 65(4), 1257–1317. https://doi.org/10.1124/pr.112.007138
Key Scientific Articles
-
Grinnell, S. G. (2014). Pharmacologic Characterization in the Rat of a Potent Analgesic Lacking Respiratory Depression, IBNtxA. Journal of Pharmacology and Experimental Therapeutics, 350(3), 710–718. https://doi.org/10.1124/jpet.114.213199
-
Lu, Z. (2015). Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. Journal of Clinical Investigation, 125(7), 2626–2630. https://doi.org/10.1172/jci81070
-
Lu, Z. (2018). Truncated μ-Opioid Receptors With 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesthesia & Analgesia, 126(3), 1050–1057. https://doi.org/10.1213/ane.0000000000002538
-
Majumdar, S. (2011). Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proceedings of the National Academy of Sciences, 108(49), 19778–19783.https://doi.org/10.1073/pnas.1115231108
-
Majumdar, S., & Pasternak, A. R. (2011). Generation of novel radiolabeled opiates through site-selective iodination. Bioorganic & Medicinal Chemistry Letters, 21(13), 4001–4004. https://doi.org/10.1016/j.bmcl.2011.05.008
-
Majumdar, S., & Pasternak, A. R. (2012). Synthesis and Evaluation of Aryl-Naloxamide Opiate Analgesics Targeting Truncated Exon 11-Associated μ Opioid Receptor (MOR-1) Splice Variants. Journal of Medicinal Chemistry, 55(14), 6352–6362. https://doi.org/10.1021/jm300305c
-
Marrone, G. F. (2015). Radioligand Binding Assay for an Exon 11-Associated Mu Opioid Receptor Target. Methods in Molecular Biology, 241–249. https://doi.org/10.1007/978-1-4939-2914-6_16
-
Marrone, G. F. (2016a). Tetrapeptide Endomorphin Analogs Require Both Full Length and Truncated Splice Variants of the Mu Opioid Receptor Gene Oprm1 for Analgesia. ACS Chemical Neuroscience, 7(12), 1717–1727. https://doi.org/10.1021/acschemneuro.6b00240
-
Marrone, G. F. (2016b). Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS. Proceedings of the National Academy of Sciences, 113(13), 3663–3668. https://doi.org/10.1073/pnas.1523894113
-
Wieskopf, J. S. (2014). Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain, 155(10), 2063–2070.https://doi.org/10.1016/j.pain.2014.07.014
MOR Agonist/ DOR Antagonists
-
Váradi, A., et al. (2016). Mitragynine /Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry, 59(18), 8381–8397. https://doi.org/10.1021/acs.jmedchem.6b00748
-
Wilson, L. L. et al. (2021). Kratom Alkaloids, Natural and Semi-Synthetic, Show Less Physical Dependence and Ameliorate Opioid Withdrawal. Cellular and Molecular Neurobiology, 992–1001. https://doi.org/10.1007/s10571-020-01034-7
-
Kruegel, A. C. et al. (2019). 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992–1001. https://doi.org/10.1021/acscentsci.9b00141
Irreversible MOR Antagonists
-
Dong, J. (2014a). SuFEx-Based Synthesis of Polysulfates. Angewandte Chemie International Edition, 53(36), 9466–9470. https://doi.org/10.1002/anie.201403758
-
Dong, J. (2014b). Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angewandte Chemie International Edition, 53(36), 9430–9448. https://doi.org/10.1002/anie.201309399
-
Katritch, V. (2011). Ligand-Guided Receptor Optimization. Methods in Molecular Biology, 189–205. https://doi.org/10.1007/978-1-61779-588-6_8
-
Leen, J. L. S. (2019). Carfentanil: a narrative review of its pharmacology and public health concerns. Canadian Journal of Anesthesia/Journal Canadien d’anesthésie, 66(4), 414–421. https://doi.org/10.1007/s12630-019-01294-y
-
Liu, Z. (2018). SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. Journal of the American Chemical Society, 140(8), 2919–2925. https://doi.org/10.1021/jacs.7b12788
-
Moss, R. B. (2019). Higher doses of naloxone are needed in the synthetic opioid era. Substance Abuse Treatment, Prevention, and Policy, 14(1), x. https://doi.org/10.1186/s13011-019-0195-4
-
Rzasa Lynn, R. (2017). Naloxone dosage for opioid reversal: current evidence and clinical implications. Therapeutic Advances in Drug Safety, 9(1), 63–88. https://doi.org/10.1177/2042098617744161
-
Suffoletto, B. (2020). Risk and protective factors for repeated overdose after opioid overdose survival. Drug and Alcohol Dependence, 209, 107890. https://doi.org/10.1016/j.drugalcdep.2020.107890
-
Sutter, M. E. (2016). Fatal Fentanyl: One Pill Can Kill. Academic Emergency Medicine, 24(1), 106–113. https://doi.org/10.1111/acem.13034
-
Weiner, S. G. (2020). One-Year Mortality of Patients After Emergency Department Treatment for Nonfatal Opioid Overdose. Annals of Emergency Medicine, 75(1), 13–17. https://doi.org/10.1016/j.annemergmed.2019.04.020